Search results for "Hall effect"
showing 10 items of 702 documents
Tailoring the anomalous Hall effect of SrRuO$_3$ thin films by strain: a first principles study
2021
Motivated by the recently observed unconventional Hall effect in ultra-thin films of ferromagnetic SrRuO$_3$ (SRO) we investigate the effect of strain-induced oxygen octahedral distortion in the electronic structure and anomalous Hall response of the SRO ultra-thin films by virtue of density functional theory calculations. Our findings reveal that the ferromagnetic SRO films grown on SrTiO$_3$ (in-plane strain of $-$0.47$\%$) have an orthorhombic (both tilting and rotation) distorted structure and with an increasing amount of substrate-induced compressive strain the octahedral tilting angle is found to be suppressed gradually, with SRO films grown on NdGaO$_3$ (in-plane strain of $-$1.7$\%$…
Inhomogeneous electron distribution in InN nanowires: Influence on the optical properties
2012
In this work, we study theoretically and experimentally the influence of the surface electron accumulation on the optical properties of InN nanowires. For this purpose, the photoluminescence and photoluminescence excitation spectra have been measured for a set of self-assembled InN NWs grown under different conditions. The photoluminescence excitation experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN nanowires. With the self-consistent model we can explore how the optical absorption depends on nanowires radius and doping concentration. Our model solves the Schrodinger equation for a cylindrical nanowire of infinite length, a…
Tuning of interfacial perpendicular magnetic anisotropy and domain structures in magnetic thin film multilayers
2019
We investigate the magnetic domain structures and the perpendicular magnetic anisotropy (PMA) arising in CoFeB films interfaced with selected heavy metal (HM) layers with large spin Hall angles in HM/CoFeB/MgO (HM = W, Pt, Pd, W x Ta1−x ) stacks as a function of CoFeB thickness and composition for both as-deposited and annealed materials stacks. The coercivity and the anisotropy fields of annealed material stacks are higher than for the as-deposited stacks due to crystallisation of the ferromagnetic layer. Generally a critical thickness of MgO > 1 nm provides adequate oxide formation at the top interface as a requirement for the generation of PMA. We demonstrate that in stacks with Pt as th…
Impact of Annealing Temperature on Tunneling Magnetoresistance Multilayer Stacks
2020
The effect of annealing temperatures on the tunnel magnetoresistance (TMR) of MgO-based magnetic tunnel junctions (MTJs) has been investigated for annealing between 190 and 370°C. The TMR shows a maximum value of 215% at an annealing temperature of 330°C. A strong sensitivity of the TMR and the exchange bias of the pinned ferromagnetic layers on the annealing temperature are observed. Depending on sensor application requirements, the MTJ can be optimized either for stability and pinning strength or for a high TMR signal by choosing the appropriate annealing temperature. The switching mechanism of the ferromagnetic layers in the MTJ and the influence of the annealing on the layer properties,…
Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy
2020
We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…
The interdependence of structural and electrical properties in TiO2/TiO/Ti periodic multilayers
2013
International audience; Multilayered structures with 14-50 nm periods composed of titanium and two different titanium oxides, TiO and TiO2, were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. The structure and composition of these periodic TiO2/TiO/Ti stacks were investigated by X-ray diffraction and transmission electronic microscopy techniques. Two crystalline phases, hexagonal close packed Ti and face centred cubic TiO, were identified in the metallic-rich sub-layers, whereas the oxygen-rich ones comprised a mixture of amorphous TiO2 and rutile phase. DC electrical resistivity rho measured for temperatures ranging from 300 to 500 K exhibited a meta…
Influence of surface topography on depth profiles obtained by Rutherford backscattering spectrometry
2000
A method for determining correct depth profiles from samples with rough surfaces is presented. The method combines Rutherford backscattering spectrometry with atomic force microscopy. The topographical information obtained by atomic force microscopy is used to calculate the effect of the surface roughness on the backscattering spectrum. As an example, annealed Au/ZnSe heterostructures are studied. Gold grains were observed on the surfaces of the annealed samples. The annealing also caused diffusion of gold into the ZnSe. Backscattering spectra of the samples were measured with a 2 MeV 4He+ ion beam. A scanning nuclear microprobe was used to verify the results by measuring backscattering fro…
Magnetic properties of exciton trapped by an off-center ionized donor in single quantum dot
2021
Abstract It is known that the lines of exciton (X) and exciton trapped by an ionized donor ( D + , X ) are often very close which makes very difficult their experimental identification. In order to facilitate their distinction in spherical quantum dots, we investigate the effect of an applied magnetic field studying the binding energy of the complex ( D + , X ) as function of dot size and the ionized donor position. Our calculation is using a variational approach taking into account the interactions between all charge carriers. Our results show that the complex is more sensitive to the magnetic field than the exciton and that the energy of the exciton is not sufficiently affected when the i…
Enhancement of the Spin Pumping Effect by Magnon Confluence Process in YIG/Pt Bilayers
2019
The experimental investigation of the spin pumping process by dipolar‐exchange magnons parametrically excited in in‐plane magnetized yttrium iron garnet/platinum bilayers is presented. The electric voltage generated in the platinum layer via the inverse spin Hall effect (ISHE) results from contributions of two opposite spin currents formed by the longitudinal spin Seebeck effect and by the spin pumping from parametric magnons. In the field‐dependent measurements of the spin pumping‐induced component of the ISHE‐voltage, a clearly visible sharp peak is detected at high pumping powers. It is found that the peak position is determined by the process of confluence of two parametrically excited …
Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV 3 Sb 5
2020
The anomalous Hall effect soars when Dirac quasiparticles meet frustrated magnetism.