Search results for "Hall effect"

showing 10 items of 702 documents

Tailoring the anomalous Hall effect of SrRuO$_3$ thin films by strain: a first principles study

2021

Motivated by the recently observed unconventional Hall effect in ultra-thin films of ferromagnetic SrRuO$_3$ (SRO) we investigate the effect of strain-induced oxygen octahedral distortion in the electronic structure and anomalous Hall response of the SRO ultra-thin films by virtue of density functional theory calculations. Our findings reveal that the ferromagnetic SRO films grown on SrTiO$_3$ (in-plane strain of $-$0.47$\%$) have an orthorhombic (both tilting and rotation) distorted structure and with an increasing amount of substrate-induced compressive strain the octahedral tilting angle is found to be suppressed gradually, with SRO films grown on NdGaO$_3$ (in-plane strain of $-$1.7$\%$…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceCondensed matter physicseducationGeneral Physics and AstronomyThermal fluctuationsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesTetragonal crystal systemMagnetizationCondensed Matter::Materials ScienceFerromagnetismHall effect0103 physical sciencesddc:530Orthorhombic crystal systemBerry connection and curvature0210 nano-technology
researchProduct

Inhomogeneous electron distribution in InN nanowires: Influence on the optical properties

2012

In this work, we study theoretically and experimentally the influence of the surface electron accumulation on the optical properties of InN nanowires. For this purpose, the photoluminescence and photoluminescence excitation spectra have been measured for a set of self-assembled InN NWs grown under different conditions. The photoluminescence excitation experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN nanowires. With the self-consistent model we can explore how the optical absorption depends on nanowires radius and doping concentration. Our model solves the Schrodinger equation for a cylindrical nanowire of infinite length, a…

010302 applied physicsElectron densityPhotoluminescenceMaterials scienceCondensed matter physicsNanowirePhysics::Optics02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCondensed Matter::Materials ScienceAbsorption edge0103 physical sciencesPhotoluminescence excitation0210 nano-technologyAbsorption (electromagnetic radiation)Surface statesphysica status solidi c
researchProduct

Tuning of interfacial perpendicular magnetic anisotropy and domain structures in magnetic thin film multilayers

2019

We investigate the magnetic domain structures and the perpendicular magnetic anisotropy (PMA) arising in CoFeB films interfaced with selected heavy metal (HM) layers with large spin Hall angles in HM/CoFeB/MgO (HM = W, Pt, Pd, W x Ta1−x ) stacks as a function of CoFeB thickness and composition for both as-deposited and annealed materials stacks. The coercivity and the anisotropy fields of annealed material stacks are higher than for the as-deposited stacks due to crystallisation of the ferromagnetic layer. Generally a critical thickness of MgO > 1 nm provides adequate oxide formation at the top interface as a requirement for the generation of PMA. We demonstrate that in stacks with Pt as th…

010302 applied physicsMaterials scienceAcoustics and UltrasonicsCondensed matter physicsMagnetic domainAnnealing (metallurgy)02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTransition metalFerromagnetismHall effect0103 physical sciencesThin film0210 nano-technologyAnisotropyJournal of Physics D: Applied Physics
researchProduct

Impact of Annealing Temperature on Tunneling Magnetoresistance Multilayer Stacks

2020

The effect of annealing temperatures on the tunnel magnetoresistance (TMR) of MgO-based magnetic tunnel junctions (MTJs) has been investigated for annealing between 190 and 370°C. The TMR shows a maximum value of 215% at an annealing temperature of 330°C. A strong sensitivity of the TMR and the exchange bias of the pinned ferromagnetic layers on the annealing temperature are observed. Depending on sensor application requirements, the MTJ can be optimized either for stability and pinning strength or for a high TMR signal by choosing the appropriate annealing temperature. The switching mechanism of the ferromagnetic layers in the MTJ and the influence of the annealing on the layer properties,…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetoresistanceAnnealing (metallurgy)02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceTunnel magnetoresistanceExchange biasFerromagnetismCondensed Matter::Superconductivity0103 physical sciences0210 nano-technologyQuantum tunnellingIEEE Magnetics Letters
researchProduct

Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy

2020

We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsNucleation02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonMagnetic fieldMagnetization[SPI]Engineering Sciences [physics]Domain wall (magnetism)Hall effect0103 physical sciencesIrradiation0210 nano-technologyCurrent densityComputingMilieux_MISCELLANEOUS
researchProduct

The interdependence of structural and electrical properties in TiO2/TiO/Ti periodic multilayers

2013

International audience; Multilayered structures with 14-50 nm periods composed of titanium and two different titanium oxides, TiO and TiO2, were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. The structure and composition of these periodic TiO2/TiO/Ti stacks were investigated by X-ray diffraction and transmission electronic microscopy techniques. Two crystalline phases, hexagonal close packed Ti and face centred cubic TiO, were identified in the metallic-rich sub-layers, whereas the oxygen-rich ones comprised a mixture of amorphous TiO2 and rutile phase. DC electrical resistivity rho measured for temperatures ranging from 300 to 500 K exhibited a meta…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and AlloysAnalytical chemistrychemistry.chemical_elementNanotechnology02 engineering and technologySputter deposition021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsAmorphous solidchemistryElectrical resistivity and conductivityHall effectRutile0103 physical sciencesCeramics and Composites[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologyHigh-resolution transmission electron microscopyTemperature coefficientTitanium
researchProduct

Influence of surface topography on depth profiles obtained by Rutherford backscattering spectrometry

2000

A method for determining correct depth profiles from samples with rough surfaces is presented. The method combines Rutherford backscattering spectrometry with atomic force microscopy. The topographical information obtained by atomic force microscopy is used to calculate the effect of the surface roughness on the backscattering spectrum. As an example, annealed Au/ZnSe heterostructures are studied. Gold grains were observed on the surfaces of the annealed samples. The annealing also caused diffusion of gold into the ZnSe. Backscattering spectra of the samples were measured with a 2 MeV 4He+ ion beam. A scanning nuclear microprobe was used to verify the results by measuring backscattering fro…

010302 applied physicsMicroprobeMaterials scienceIon beamAnnealing (metallurgy)Analytical chemistryGeneral Physics and AstronomyHeterojunction02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyRutherford backscattering spectrometry01 natural sciencesSpectral lineCondensed Matter::Materials Science0103 physical sciencesSurface roughness0210 nano-technologySpectroscopyJournal of Applied Physics
researchProduct

Magnetic properties of exciton trapped by an off-center ionized donor in single quantum dot

2021

Abstract It is known that the lines of exciton (X) and exciton trapped by an ionized donor ( D + , X ) are often very close which makes very difficult their experimental identification. In order to facilitate their distinction in spherical quantum dots, we investigate the effect of an applied magnetic field studying the binding energy of the complex ( D + , X ) as function of dot size and the ionized donor position. Our calculation is using a variational approach taking into account the interactions between all charge carriers. Our results show that the complex is more sensitive to the magnetic field than the exciton and that the energy of the exciton is not sufficiently affected when the i…

010302 applied physicsPhysicsExcitonBinding energyGeneral Physics and Astronomy02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsMagnetic fieldCondensed Matter::Materials ScienceQuantum dotPosition (vector)Ionization0103 physical sciencesDiamagnetismGeneral Materials ScienceCharge carrier0210 nano-technologyCurrent Applied Physics
researchProduct

Enhancement of the Spin Pumping Effect by Magnon Confluence Process in YIG/Pt Bilayers

2019

The experimental investigation of the spin pumping process by dipolar‐exchange magnons parametrically excited in in‐plane magnetized yttrium iron garnet/platinum bilayers is presented. The electric voltage generated in the platinum layer via the inverse spin Hall effect (ISHE) results from contributions of two opposite spin currents formed by the longitudinal spin Seebeck effect and by the spin pumping from parametric magnons. In the field‐dependent measurements of the spin pumping‐induced component of the ISHE‐voltage, a clearly visible sharp peak is detected at high pumping powers. It is found that the peak position is determined by the process of confluence of two parametrically excited …

010302 applied physicsSpin pumpingMaterials scienceCondensed matter physicsField (physics)MagnonYttrium iron garnet02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryExcited state0103 physical sciencesThermoelectric effectSpin Hall effectCondensed Matter::Strongly Correlated Electrons0210 nano-technologySpin-½physica status solidi (b)
researchProduct

Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV 3 Sb 5

2020

The anomalous Hall effect soars when Dirac quasiparticles meet frustrated magnetism.

02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceHall effectCondensed Matter::Superconductivity0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsAstrophysics::Galaxy AstrophysicsResearch ArticlesPhysicsMultidisciplinaryCondensed matter physicsScatteringDirac (video compression format)PhysicsSciAdv r-articles021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemimetalFerromagnetismMagnetQuasiparticleSpin Hall effectCondensed Matter::Strongly Correlated Electrons0210 nano-technologyResearch ArticleScience Advances
researchProduct